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Abstract  

X-ray diffraction pat tems from oriented polycrystal l ine 
fibers of  some biopolymers  show that the molecules are 
disordered within the microcrystalli tes.  Quant i fying the 
disorder in such specimens is a necessary step for the 
use of their diffraction patterns for accurate structure 
determination. Theory and algorithms for calculating 
diffraction patterns from such fibers have recently been 
described [Stroud & Mil lane (1995). Acta  Cryst. AS1, 
000-000].  Here the application of these methods to 
determining the kind and degree of disorder in two 
polynucleotide fibers is described. The more ordered 
system shows random screw disorder accompanied by 
small lattice distortions, and the more disordered system 
shows larger lattice distortions and significant rotational 
disorder. These results show the potential  of  these meth- 
ods for determining disorder in polycrystal l ine fibers; 
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uniqueness of the solutions and implications for structure 
determination are discussed. 

1. Introduction 

The molecular  and crystal structures of many  of biopoly- 
mers and rod-like macromolecular  assemblies have been 
determined by X-ray fiber diffraction analysis  (Amott ,  
1980; Millane,  1988). In most  cases, diffraction data 
from polycrys ta l l ine  specimens,  which are made up 
of small crystallites that are randomly rotated relative 
to each other, have been used for structural analysis 
(Arnott, 1980; Millane,  1988). The diffraction patterns 
from these specimens are equivalent  to the cylindrical  
projection of the pattern from a single crystal and 
are used to determine full crystal structures. In other 
cases, structure determination has used diffraction data 
from non-crystal l ine fibers, in which the molecules are 
merely oriented but not otherwise organized in the speci- 
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men (Namba & Stubbs, 1985; Millane, Chandrasekaran, 
Amott & Dea, 1988). The data are equivalent to the 
cylindrical average of the intensity diffracted by a single 
molecule and can be used to determine the structure of 
an isolated molecule. 

In some cases, however, the best specimen that can 
be obtained gives a diffraction pattern indicative of or- 
dering that is intermediate between the extremes present 
in polycrystalline and non-crystalline fibers (Miller & 
Parry, 1974; Amott, 1980). The pattern may either 
contain sharp Bragg reflections at low resolution that 
give way to continuous layer-line intensities at high 
resolution or contain Bragg and diffuse diffraction dis- 
persed over its entirety. In either case, the specimen 
is essentially polycrystalline but the packing of the 
molecules in the crystallites is disordered in some way. 
The diffracted intensity then depends not only on the 
molecular and crystal structures but also on the kind 
and degree of disorder within the crystallites. Since 
structure determination essentially involves finding a 
model structure whose calculated diffraction amplitudes 
match those that are measured, methods for calculating 
the diffraction from an appropriate model of a disordered 
polycrystaUine fiber are necessary for accurate struc- 
ture determination using data from these kinds of 
specimens. 

In a few cases, where the disorder is simple and 
easily characterized (usually involving two distinct po- 
sitions or orientations of the molecules), the effects of 
disorder have been incorporated into the determination 
of biopolymer structures (Miller & Parry, 1974; Arnott 
& Selsing, 1974). However, in other cases where the 
disorder is more complicated and not as easily character- 
ized, structures have been determined without taking the 
disorder into account (Arnott, Chandrasekaran, Millane 
& Park, 1986; Park, Arnott, Chandrasekaran, MiUane 
& Campagnari, 1987). In these latter cases, the higher- 
resolution data were treated as being due to a non- 
crystalline specimen and the low-resolution Bragg data 
as coming from a perfect polycrystalline specimen. Since 
disorder affects both of these components, a straightfor- 
ward approach such as this may introduce errors into 
the structures so determined. 

We have recently reported a statistical model of dis- 
ordered polycrystalline fibers together with theory and 
computational procedures for calculating fiber diffraction 
patterns from the model (Stroud & Millane, 1995). 
Simulations using these methods show how various 
parameters describing disorder can be related to different 
features on diffraction patterns (Stroud & Millane, 1995). 
Here we describe the application of these methods to 
determining the kind and degree of disorder in two 
polynucleotide fibers. The various disorder parameters in 
models are adjusted so that the features on the calculated 
patterns match those of the observed patterns. This 
allows the primary forms of disorder in the fibers to 
be identified and quantified. 

2. Methods 

2.1. Diffraction data 

Diffraction patterns were scanned on an Optronics 
Photoscan P-1000 rotating drum microdensitometer, 
with a raster spacing of 501xm. The center of each 
pattern, the orientation of the pattern relative to 
the raster, the film-to-fiber distance and the tilt of 
the fiber relative to the incident X-ray beam were 
determined using standard methods (Fraser, MacRae, 
Miller & Rowlands, 1976; Miilane & Arnott, 1986). 
Intensities measured at positions between the recorded 
layer lines were used to calculate a two-dimensional 
global background [expanded as a Fourier-Bessel 
series (Millane & Arnott, 1985)], which was subtracted 
from the diffraction pattern. The background-corrected 
patterns were mapped to reciprocal space and averaged 
over the four quadrants. Layer-line amplitudes were 
obtained as traces of the amplitude along the centers 
of layer lines. 

2.2. Calculation of diffraction patterns from models of 
disordered specimens 

Our model of disordered polycrystalline fibers and 
the theory of diffraction from these fibers are described 
in detail by Stroud & Millane (1995). Fourier-Bessel 
structure factors were calculated [using water-weighted 
atomic scattering factors (Fraser, MacRae & Suzuki, 
1978)] from the atomic coordinates of the structures 
previously determined from the diffraction patterns un- 
der study. As described above, these coordinates cannot 
be expected to be exactly correct since the procedure 
used to determine them did not take into account the 
effects of disorder. Assuming, however, that any errors 
in the coordinates are small, their effect will be to intro- 
duce small changes into the calculated Fourier-Bessel 
structure factors. This will influence the amplitudes 
of the Bragg and continuous components but not the 
distribution of these components in different regions 
of the diffraction pattern, which is mainly affected by 
disorder. Small errors in the atomic coordinates are not, 
therefore, expected to significantly affect the analysis of 
packing disorder. 

Layer-line amplitudes were calculated for ideal speci- 
mens in which the constituent disordered crystallites are 
perfectly oriented and are composed of structurally regu- 
lar molecules of infinite length. Full two-dimensional 
diffraction patterns were obtained from the layer-line 
amplitudes by first broadening them with a Gaussian 
profile to account for the effect of the coherence length, 
Ic, of the molecules (Stubbs, 1974). The broadened layer 
lines were then substituted into the disorientation inte- 
gral of Holmes & Barrington Leigh (1974), which was 
evaluated for a normal distribution of crystallite orien- 
tations with variance o~0 z. The resulting two-dimensional 
pattern was then convolved with a circularly symmetric 
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Gaussian function with standard deviation 8 x 10 -4 A -1 
(corresponding, approximately, to a Gaussian beam pro- 
file with a standard deviation of 25 lim on the film). 
Traces were made through the centers of the layer 
lines of the final patterns for comparison with the cor- 
responding traces made from the measured patterns. 
These traces show more detail than do continuous tone 
representations of a whole diffraction pattern. 

Our overall approach to quantifying disorder in poly- 
crystalline fibers is as follows. Crystallite size, coherence 
length and the disorientation angle (which are indepen- 
dent of the exact kind of disorder present) are first 
estimated by matching the lateral and angular profiles 
of discrete reflections on the calculated and measured 
diffraction patterns. The lateral profile of a reflection is 
the profile of a cut though the center of the reflection 
made along the layer line, while the angular profile is 
that measured along an arc centered on the origin of 
reciprocal space. The calculated profiles are scaled to 
the corresponding observed profiles so as to remove the 
influence of the particular molecular models used in their 
calculation and the relevant disorder parameters adjusted 
to minimize the r.m.s, error between the two sets of 
profiles. 

Layer-line amplitudes are then calculated using these 
parameters and compared with the measured amplitudes. 
Discrepancies between the two sets of amplitudes are 
used to infer a component of disorder that is present, 
and a series of diffraction patterns are calculated to 
estimate parameters describing this component. Residual 
discrepancies are then used to identify further compo- 
nents of the disorder and the process repeated until the 
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best fit with data is obtained. Since we are interested 
in the uniqueness of solutions, different possible kinds 
of disorder were investigated in all cases. The exact 
procedure used depends on the problem at hand and is 
described in detail for each diffraction pattern studied. 

3. A DNA duplex 

A fiber diffraction pattern from the a form of the polynu- 
cleotide duplex poly(dA), poly(dT) is shown in Fig. 1 
(Amott & Selsing, 1974). The pattern is dominated by 
Bragg reflections at resolutions less than 5 A, which 
give way to continuous diffraction at higher resolution. 
This diffraction pattern was first analyzed by Amott 
& Selsing (1974), who determined the structure using 
20 of the low-resolution Bragg reflections. The struc- 
ture was re-determined in more detail by Park, Amott, 
Chandrasekaran, Millane & Campagnari (1987) using a 
larger data set consisting of the continuous layer-lin t 
amplitudes measured in the region 0.18 < p < 0.32 A T M  

and the amplitudes of 33 Bragg reflections in the region 
- 1  

p < 0.18 A , p being the distance from the origin of 
reciprocal space. The atomic coordinates from the later 
study are used in the diffraction calculations presented 
here. The avera[~e unit cell is monoclinic with a = b = 
23.2, c = 32.3 A and "~ = 120 °, a single molecule with 
101 helix symmetry passes through the unit cell, and the 
space group is P1. 

For the current study, the diffraction pattern in Fig. 1 
was processed as described in §2. Traces of the diffracted 
amplitude along the centers of the layer lines of the 
processed pattern are shown in Fig. 2. A series of 

Fig. 1. Fiber diffraction pattern from a-poly(dA) • poly(dT) (Amott & 
S¢lsing, 1974). 
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Fig. 2. Amplitudes along the centers of the layer lines of the diffraction 
pattern from C~-l~ly(dA) • l~ly(dT). 
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diffraction patterns for a polycrystalline structure with 
no disorder were calculated and the crystallite radius re, 
coherence length lc and disorientation angle a0 adjusted 
to obtain the best match of the calculated angular and 
lateral profiles of the Bragg reflections to those observed. 
The estimate for rc was obtained by matching the lateral 
profiles of equatorial reflections, while estimates of Ic 
and a0 were obtained by matching the angular profiles 
of all of the strong Bragg reflections on the pattern. 
This gave the estimates r~ = 165/~, a0 = 1.8 ° and 
l~ = 175 A. The diffraction pattern calculated for an 

ideally polycrystalline fiber with these values is shown 
in Fig. 3(a). 

As is evident in Fig. 3(a), the effect of disorientation 
is to broaden reflections on the upper layer lines, particu- 
larly those closer to the meridian. This removes much of 
the structure from the upper layer lines of the diffraction 
pattern. Comparison of Figs. 2 and 3(a) shows that, 
despite this, the calculated pattern still displays too much 
Bragg structure at high resolution. This indicates that 
there is significant disorder in the specimen. The layer- 
line traces in Fig. 2 show Bragg reflections on layer lines 
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Fig. 3. Calculated layer-line amplitudes for polycrystalline models o f  o~-poly(dA) • poly(dT) with (a) no disorder, (b) random screw disorder, 
(c) random screw disorder and lattice distortions with = 0.6/~, and --- 0 .5/~ and ( small independent rotations and translations o f  _. = fit -I 0"1~ t O'axia 1 _d~ 
the molecules with or~ 5 ° and O'axia 1 0.7 and lateral disorder with O'la t "- 0.6 A -  . 
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0 through 4 and vestiges of reflections on layer lines 6 
and 7. The absence of Bragg interference for reciprocal- 
space cylindrical polar radii R ~< 0.1/~-1 on layer lines 
6 and 7, but its presence for larger values of R, is 
evidence for screw disorder (Stroud & Millane, 1995). 
Introducing random screw disorder into the model gives 
the diffraction pattern shown in Fig. 3(b). Overall, the 
calculated pattern agrees rather well with the observed 
pattern but differs from it in the following respects: (1) 
there is too much Bragg structure for 0.12 ~ R ~< 
0.18 tl, -1 on layer lines 6 and 7; 12) there is too much 
Bragg structure for R ~> 0.2A - I  on the lower layer 
lines; and (3) the two Bragg peaks o n  layer line 1 at 
R _~ 0.08/~ -1 and R _~ 0.10A -~ are absent from 
the observed pattern. Discrepancies 1 and 2 can be 
addressed by introducing small amounts of lateral and 
axial disorder into the model. 

Lateral disorder reduces the intensity of Bragg reflec- 
tions with increasing R, while axial disorder reduces 
the intensity of the reflections with increasing distance, 
Z, from the equator. The weighting that applies to a 
reflection is 

2 2 2 w(n,  1) = exp[-47r2(R2a2~t + l a~i~l/C )1, (1) 

where a~a t and 2 a~ial are, respectively, the variances 
of small normally distributed lateral and axial displace- 
ments of the molecules away from their ideal positions 
in a crystaUite (Stroud & Millane, 1995). An effective 
strategy for estimating al~t and craig1 is to set one 
of these parameters to zero and vary the other until 
the calculated pattem reproduces a particular feature of 
the observed pattern. A second feature of the observed 
pattern is then reproduced by varying the parameters 
so that the weight given by (1) remains approximately 
constant in the region occupied by the first feature. In 
the current example, setting a~xi~1 = 0.7 A reduces the 
Bragg intensity on layer lines l = 5 and above. Holding 
w(R ,Z )  constant for R "~ 0.14A -1 and 1 = 6 and 
reducing a~i~l to 0.5 A while increasing alat to 0.6/~ 
keeps the residual Bragg structure on layer line l = 6 
but eliminates the undesirable structure at large R on the 
lower layer lines, introduces more continuous intensity 
at small values of R on these layers and results in the 
best fit (Fig. 3c) to the observed pattem. The overall 
match of this pattern to that observed is now quite good, 
aside from some weak residual Bragg structure at high 
resolution, with discrepancies 1 and 2 noted above taken 
care of. Discrepancy 3, the presence of Bragg reflections 
for R ~_ 0.08 and 0.10A -1 on layer line 1 on the 
calculated pattern, remains however. 

The maximum radius of a-poly(dA), poly(dT) is 
such that, on layer line I = 1, only the first-order 
Fourier-Bessel structure factor contributes to the 
diffracted intensity for R ~< 0.13/~ -1. Removing 
the reflections at R ~ 0.08 and R = 0.10A -1 by 
introducing additional rotation and lattice disorder into 

the model also attenuates the reflection at R _~ 0.04/~-1 
and produces excessive continuous intensity at low 
resolution. Attempts to reduce the amplitudes of these 
reflections must, therefore, consider other forms of 
disorder. 

The systematic absence of reflections from particular 
layer lines and particular values of R can result from dis- 
crete rotations and/or axial translations of the molecules 
(Stroud & Millane, 1995). However, calculations for 
models in which the molecule in each unit cell could 
occupy either of two discrete positions, made over the 
full range of possible rotations and axial translations, 
showed that reflections could not be removed from layer 
line 1 without producing serious discrepancies between 
the calculated and observed patterns elsewhere. In factf 
since there are no absent reflections for R ~ 0.12 tl,- 
on layer lines 0, 2, 3 and 4 of the observed pattern, 
it is likely that the extra reflections on layer line 1 of 
the calculated pattern are due not to shortcomings in 
the model of disorder but rather to an overestimate (as 
a result of small errors in the molecular model or of 
associated ordered solvent) of the molecular transform 
on the first layer line in this region. Errors in the 
molecular transform could also account for the reflection 
at R ~_ 0.18/~ on layer line 2 of the calculated pattern 
being somewhat weaker than observed. 

The model incorporating random screw disorder with 
small axial and lateral shifts gives, therefore, a good 
match to the observed diffraction pattern. However, this 
solution cannot be considered unique without consider- 
ing alternative kinds of disorder in which the screw dis- 
placements of the molecules are not completely random 
(i.e. small screw displacements) or the axial displace- 
ments of the molecules are not correlated to their rota- 
tions (i.e. independent small rotations and axial transla- 
tions) or the molecules are directionally disordered. 

To investigate the first alternative, we kept the lattice- 
distortion parameters fixed at the values determined 
above and calculated diffraction patterns for models 
with normally distributed screw disorder for a range of 
standard deviations o-~ (Stroud & Millane, 1995). For 
a~ > 10 °, there is little change to the diffraction pattern 
compared to that for a random screw because aliasing 
of the distribution function of molecular positions for a 
normally distributed screw leads to a distribution rather 
similar to that for random screw disorder (Stroud & 
Millane, 1995). Reducing a~ below 10 ° modifies the 
pattern but introduces additional Bragg intensity close 
to the meridian on the upper layer lines, in contrast 
to observation. These Bragg reflections can be removed 
by increasing the axial disorder but this then attenuates 
Bragg reflections on the lower layer lines too much. 
Small screw disorder (a~ < 10 °) is therefore not 
consistent with the observed diffraction pattern. 

The second alternative model involves small indepen- 
dent rotations and translations of the molecules. The 
effect of small rotations is to reduce, with increasing 
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Bessel order, the contribution of the Fourier-Bessel 
structure factors to the amplitude of the Bragg re- 
flections. The location of the reflections most affected 
depends on which Bessel orders satisfy the helix selec- 
tion rule on the different layer lines. For a molecule 
with 101 helix symmetry, the reflections most affected 
are those on layer lines 1 = 4, 5 and 6 and those 
at large values of R on the remaining layer lines. 
Small rotations with a normal distribution and standard 
deviation cr~o were introduced into a model with no lattice 
disorder. Rotations with c% = 5 ° remove some Bragg 
intensity from layer lines l = 5, 6 and 7 and weaken 
the Bragg reflections on layer lines l = 0 and 1 for 
R ~ 0.14/1, -1. Larger rotations suppress the Bragg 
reflections on layer line l = 4 too much and introduce 
excessive diffuse intensity into this region. They are not, 
therefore, consistent with observation. Small rotations, 
by themselves, do not give a satisfactory match of the 
calculated and the observed pattern. Lattice disorder 
is needed to remove excess Bragg intensity at high 
resolution. Repeating the procedure used to determine 
the lattice disorder parameters in the case of random 
screw disorder yielded the values Craxial = 0.7/~ and 
crlat = 0.6/1, for cr~o = 5 °. The corresponding diffraction 
pattern is shown in Fig. 3(d). The main differences 
between Figs. 3(c) and (d) are that, in the latter, the 
Bragg structure on layer lines 6 and 7 is suppressed at 
R _~ 0.13/~-1, and is slightly enhanced on layer lines 
6 and 7 for R _~ 0.04-0.09/~-1 and throughout layer 
line 8, relative to the former. This appears to be at odds 
with the data, although the differences are rather small. 
Increasing the lateral disorder to reduce the intensity of 
these reflections reduces the intensity of reflections at 
smaller R and introduces excess diffuse intensity in this 
region and on layer lines 0 to 4 for R .%< 0 .1 /~ - ' .  Small 
rotations and translations do not, therefore, appear to fit 
the data quite as well as random screw disorder. 

The final alternative model is one that includes di- 
rectional disorder (Stroud & Millane, 1995). Directional 
disorder was introduced into the models with random 
screw disorder, and small rotations and translations 
already considered, and diffraction patterns calculated 
for the full range of the parameters (go0, zo) that de- 
scribe the relationship between the 'up'  and 'down' 
molecules (Stroud & Millane, 1995). For most values 
of (qo0, z0), the calculated pattern changed considerably 
and no longer matched the data. However, for a narrow 
range of values of these parameters, there were only 
small changes to the resulting diffraction patterns. These 
values were (q00, z0) = (0°,0.01c) for the model with 
random screw disorder and (qo0, z0) = (20°,0.04c) 
for the model with small independent rotations and 
translations. The effect of directional disorder is small in 
both cases, however, being only to suppress some of the 
weak Bragg intensity on layer line 1 for R ~ 0.15/~-1 
This is not significant relative to the observed pattern. 
There is therefore no evidence for or against the presence 

of directional disorder in the specimen. However, the 
simulations do show what the geometric relationship 
between up and down molecules must be if directional 
disorder is present. 

In conclusion, the model incorporating random screw 
disorder with axial and lateral disorder gives a diffraction 
pattern (Fig. 3c) that best matches the observed data. 
The model with independent small rotations and axial 
translations (Fig. 3d) does not match the data quite as 
well. The calculated two-dimensional diffraction pattern 
corresponding to Fig. 3(c), displayed in one quadrant 
of reciprocal space, is shown in Fig. 4(b), where it can 

• . a k  

(a) 

. . . m  a,aamallm ml/mhb 
(b) 

Fig. 4. Diffraction patterns for a-poly(dA), poly(dT) in one quadrant 
of reciprocal space. (a) Measured pattern; (b) calculated pattern as in 
Fig. 3(c). 
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be compared with the actual diffraction pattem mapped 
into reciprocal space (Fig. 4a). The overall agreement 
between the two is seen to be rather good. 

4. A D N A - R N A  d u p l e x  

A fiber diffraction pattern from the DNA-RNA hybrid 
polynucleotide duplex poly(dA).poly(rU) is shown 
in Fig. 5 (Arnott, Chandrasekaran, Banerjee, He & 
Walker, 1983). The pattern is dominated by continuous 
diffraction, with only seven Bragg reflections discernible 
on the first three layer lines at less than 7 A resolution. 
This diffraction pattern was analyzed by Arnott, 
Chandrasekaran, Millane & Park (1986) by refining the 
molecular conformation against the continuous intensity 
measured in the region 0.14 ~ p ~ 0.30A -1. The 
intensities of the Bragg reflections were not used as data 
in the refinement. The atomic coordinates of the refined 
structure were used to calculate the diffraction patterns 
presented here. The average unit cell is monoclinic with 
a = b = 24.8, c = 33.7A and 3' = 120 ° , a single 
molecule with 11] helix symmetry passes through the 
unit cell and the space group is P1. 

For the current study, the diffraction pattern was 
processed as described in §2. Traces of the diffracted 
amplitude along the centers of the layer lines of the 
processed pattern are shown in Fig. 6. Calculated and 
measured reflection profiles were matched (using the 
same approach as described in the previous section) and 
the parameters describing crystallite size, disorientation 
and coherence length were estimated to be rc = 100 A, 
or0 = 3 ° and lc = 175A. The diffraction pattern 
calculated for an ideally polycrystalline fiber with these 

parameters is shown in Fig. 7(a). The upper layer lines 
in Fig. 6 show no Bragg interference, so that in this 
case there is no evidence for screw disorder. However, 
the predominance of continuous intensity indicates the 
presence of substantial lattice disorder (Stroud & Mil- 
lane, 1995). Therefore, lateral disorder was introduced 
into the model in order to remove sharp reflections from 
the equator for R > 0.14A-1; this is achieved for 
trier = 1.2 A. The resulting diffraction pattern is shown 
in Fig. 7(b). Considerable Bragg intensity remains on the 
upper layer lines of this pattern but can be eliminated by 
introducing axial and rotational disorder into the model. 

The amplitudes of the Bragg reflections for R ~< 
0 . 1 4 A  -1 on layer lines 1 = 1 and 2 are determined only 
by the Fourier-Bessel structure factors of order n = l. 
For uncorrelated rotations and axial translations, these 
reflections are weighted by (Stroud & Millane, 1995) 

w exp(- /2a~ 2 2 2 2 = --47r Cr~xi~l/ /c ). (2) 

If ~r~ and O'axia I are varied such that 

2 2 2 2 + 47r a=ial/c (3) 

is constant, the low-resolution region of the diffraction 
pattern does not change. However, as tr~ is increased, 
the Bragg reflections at large R on the lower layer 
lines are attenuated since higher-order Fourier-Bessel 
structure factors contribute to their amplitudes. At large 
R then, the effect of small rotations is to assist lattice 
disorder in removing Bragg reflections from the pattern. 
Calculations showed that combinations of tr, and traxial 
for which n _~ 0.3 give satisfactory suppression of 

".- . .  ~ - • • 

, f "  

Fig. 5. Fiber diffraction pattem from poly(dA) • poly(rU) (Arnott et al., 
1983). 
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Fig. 6. Amplitudes along the centers of the layer lines of the diffraction 

pattern from poly(dA) • poly(rU). 
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reflections on the upper layer lines. Varying both a~ 
and O'axlal showed that the combination cr~ = 30 ° 
and O ' a x i a l  = 1.2/~ gives the optimum suppression of 
Bragg reflections at high resolution (Fig. 7c) and the 
best agreement between the calculated and observed 
diffraction patterns. 

As a result of helix symmetry, a rotation of Aqo -- 
32.7 ° and a translation of Zlz = 3.06/~ maps one helix 
repeat unit of poly(dA), poly(rU) onto the next. The 
value of a~ determined above is comparable to Zlqo, 
suggesting that random screw disorder could be present 
in the specimen. However, calculations for models with 
random screw disorder showed that, in order to remove 
Bragg reflections on the upper layer lines, axial disorder, 

with O ' a x i a  I = 2.0/~, must also be present in order to 
remove Bragg reflections from the upper layer lines. The 
correlation between the rotations of the molecules and 
their axial translations is then extremely weak and, given 
the aliasing effect of molecular symmetry (Stroud & 
Millane, 1995), the resulting description of the disorder 
in the specimen is virtually identical to one in terms of 
uncorrelated rotations and axial translations. 

The calculated diffraction pattern shown in Fig. 7(c) 
matches the observed pattern (Fig. 6) rather well in 
terms of the overall distribution of Bragg and continuous 
intensity. However, the calculated pattern differs from 
that observed in the following respects: (1) there are 
four sharp peaks on layer line l = 1, where just one is 
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Fig. 7. Calculated layer-line amplitudes for polycrystalline models of 
poly(dA), poly(rU) with (a) no disorder, (b) lateral disorder with 
trier = 1.2/~ and (c)  lattice distortions with crib, t = 1.2/~. and 
Oraxia I = 1.2/~ and rotational disorder with a~o = 30 °. 
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present on the observed pattern; (2) on layer line 1 = 
2, the continuous intensity at small R is slightly greater 
than observed and the weak reflecuon at R _~ 0.08/~ 
on the observed pattern is missing; and (3) the first peak 
on layer line l = 1, at R ~ 0.05/~-1, is stronger than 
the first peak on layer lines l = 0 and 1 = 2, whereas 
on the observed pattern it is weaker. 

None of the differences noted above can be reduced 
or eliminated by further manipulating the parameters 
describing lattice or rotational disorder. Increasing tTl~t, 
tr~i~l or cr~o in order to suppress the three Bragg re- 
flections on layer line l = 1 reduces the intensity of 
Bragg reflections elsewhere; decreasing these disorder 
components, in order to decrease the continuous intensity 
on layer line I = 2, introduces unwanted Bragg intensity 
at low resolution• The absence of the small reflection at 
R "~ 0•08/~-1 on layer line I = 2 cannot be corrected by 
manipulating disorder parameters since it results mainly 
from the small amplitude of the calculated molecular 
transform at this position. The amplitude of the first 
reflection on layer line l - 1 cannot be reduced so that 
it is less than that of the corresponding reflection on 
layer line l = 2 simply by varying the axial and rotation 
disorder in the model since, for small R, the weights cor- 
responding to both these disorder components decrease 
with increasing l. The discrepancies noted above are 
therefore likely to be due either to errors in the molecular 
transform or to the presence of other types of disorder. 
Other types of disorder that we considered were discrete 
rotations and translations and directional disorder. 

Discrete rotations and/or translations of the molecules 
(either alone or in conjunction with directional disorder) 
affect the Bessel orders on different layer lines in a 
manner that does not vary smoothly with layer-line 
index (Stroud & Millane, 1995) and could, therefore, 
account for discrepancy 3 noted above• To explore this 
possibility, we assumed that the molecules adopt one 
of two equally probable positions and, holding all of 
the other model parameters fixed at the values as for 
Fig. 7(c), we calculated a series of diffraction patterns 
that covered the full range of distinguishable relative 
rotations and translations (qo',z') between these two 
positions (Stroud & Millane, 1995). The desired effect 
of reducing the intensity of the first reflection on layer 
line 1 -- 1 and eliminating the other reflections on this 
layer line, without adversely affecting the amplitude of 
the first reflection on the layer line l = 2, is obtained for 
(qo',z') = (0°,0.38c)(Fig.  8a). The calculated pattern 
is then improved over the diffraction pattern shown 
in Fig. 7(c) with regard to these reflections, however 
it is worse in the sense that it now shows too much 
continuous intensity on layer line l = 1 for R <~ 
0•07 A -1. 

Discrete axial translations and rotations can occur in 
combination with directional disorder (random up/down 
chain direction). A survey of the parameters qo0 and z0 
that define the rotation axis relating the up and down 

molecules (Stroud & Millane, 1995), while cqat, o~i~l 
and o-~ were held at the values previously determined, 
showed that the best match to the observed pattern 
is obtained for (~o0, z0) = (0 °, 0.22c) or (45 °, 0.35c). 
Fig. 8(b) shows the diffraction pattern for the first ease 
and the pattern for the second case is essentially iden- 
tical. Regardless of the values of ~o0 and zo, however, 
directional disorder reinforces a peak on layer line I = 1 
at R "~ 0.12/~-1 and introduces some weak additional 
structure at higher resolution (Fig. 8b). Neither of these 
features are seen in the observed diffraction pattern 
and they cannot be counteracted by increasing o-~. 81! 
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Fig. 8. Calculated layer-line amplitudes for polycrystalline models of 
poly(dA) • poly(rU) as in Fig. 7(c), but with (a) two discrete positions 
and (b) two discrete positions and directional disorder. 
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Models incorporating directional disorder are therefore 
marginally poorer than those that do not. 

In conclusion, the above analysis allows the dominant 
forms of disorder in this specimen to be identified, 
although the solution is not quite as satisfactory as 
it is in the case of poly(dA), poly(dT). Both models 
with (Fig. 8a) and without (Fig. 7c) discrete positions 
reproduce the restriction of the Bragg reflections to the 
central region of the pattern and the overall agreement 
of these patterns with the observed pattem (Fig. 6) is 
rather good. For one molecular position, the remaining 
discrepancies relate to the relative amplitudes of the 
Bragg reflections at low resolution and these could be 
due either to additional components of disorder or to 
errors in the molecular transform. Introducing discrete 
positions corrects these discrepancies but produces ex- 
cessive continuous intensity in this region. One other 
disparity that is present in both Figs. 7(c) and 8(a) is that 
the second reflection on the equator is weaker than the 
first, whereas the reverse is true on the observed pattern. 
The disorder weight applied to the Bragg reflections in 
this region decreases monotonically with increasing R 
so that increased disorder would not affect this reversal 
in peak amplitudes. This discrepancy therefore points to 
an inconsistency between the molecular transform and 
the diffraction data. This could be due to small errors 
in the conformation of the molecule or to organized 
water molecules or ions on the periphery of the mol- 
ecule, which would increase its effective radius and thus 
modify the molecular transform in this region. 

5. Orientations of the molecules in the unit cell 

In the above description of the disordered crystal struc- 
tures of a-poly(dA), poly(dT) and poly(dA), poly(rU), 
we have omitted reference to the average position of 
the molecules in the unit cell. Given the space group of 
these structures and the symmetries of the molecules, 
this position is described by a single parameter, the 
orientation of the molecule about its long axis. Here we 
show that this parameter cannot be determined from the 
available diffraction data. 

The cylindrical average of the intensity of the hkl 
reflection diffracted from a fiber with uncorrelated lattice 
and substitution disorder can be written as 

Zhkt(R) - (1/A2)w(Rhk, Z/c)lE 

x exp[in(¢hk + Ir/2)] "Phk(R), (4) 

where (Rhk, Chk, 1/C) are the cylindrical polar coor- 
dinates of the reflection in reciprocal space, w(R, Z) 
is the lattice disorder weight, wnz is the substitution 
disorder weight, A is the area of the unit cell in the plane 
perpendicular to the Z axis, 79hk (R) is the cylindrically 
averaged profile of the hkl reflection and G,.a(R) is 

the Fourier-Bessel structure factor of order n (Stroud & 
Millane, 1995). The summation in (4) is over all Bessel 
orders n satisfying the helix selection rule (Cochran, 
Crick & Vand, 1952). 

As a result of cylindrical averaging, an observed 
Bragg reflection is a composite reflection and has an 
intensity, denoted here by l[~kt(R), equal to the sum of 
the intensities Ihkt(R) of the reflections centered at Rhk 
on the plane Z = 1/c. For a hexagonal lattice, I[~kz(R) 
is given by 

I~kt(R) = (1/A2) w(Rhk, 1/c)l~ n wntGnt(Rhk) 

x ~2 exp[in(Gk + j~r/3 + ~'/2)] 
j=0 

× 79hk(R), (5) 

where ¢/~k is the value of Chk for any one of the 
overlapping reflections. If the position of the molecule 
in the unit cell is changed by rotating it through an 
angle ~ about its long axis, then from the expression 
for the Fourier-Bessel structure factors (Cochran, Crick 
& Vand, 1952) it follows that (5) is replaced by 

I~kt(R) = (1/A2) w(Rhk, I/c) ~_~ E w,aw*, 

where 

n m 

* R X G,a(Rhk)Gmt( hk)exp[i(n- m) 
x (¢~k -- qa -4- 7r/2)]Anm79hk(R), 

Anm 
5 

= E e x p [ i ( n -  rn)j'rr/3] 
j=0 

= { 1 for n -  m divisible by 6, 
0 otherwise. 

(6) 

(7) 

For a molecule with uv helix symmetry, the difference 
( n - m )  between any two solutions of the helix selection 
rule for the same layer line is an integral multiple of 
u. Therefore, the only non-zero terms in (6) are those 
for which n -  m is divisible both by u and by 6. 
Of these, only those terms for which n and m are 
less than nmax ---- 27rrmaxR W 2, where rmax is the 
maximum radius of the molecule, are significant at radius 
R (Crowther, DeRosier & Klug, 1970). The maximum 
radius of a-poly(dA)-poly(dT) is approximately 11/~ 
and, for R < 0.3 A -~, T ~ m a  x ' ~  22 so that over the 
observed diffraction pattern the only significant terms 
in (6) are those for which n = m. These terms do 
not involve the angle qo and hence changing the av- 
erage orientation of the molecule in the unit cell has 
no effect on the observed Bragg intensity. A similar 
argument leads to the same conclusion regarding the 
continuous intensity. Therefore, within the observed 
region of reciprocal space, the diffraction pattern from 
a-poly(dA) • poly(dT) does not depend on the orientation 
of the molecule in the unit cell. With the same reasoning, 
the same can be shown for the diffraction pattern from 
poly(dA), poly(rU). 
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6. Discussion 

The results presented here show that a detailed model 
of disorder in polycrystalline fibers and expressions for 
the effects on diffraction patterns (Stroud & Millane, 
1995) can be used to analyze disorder in these kinds 
of specimen. With an approximate molecular model, the 
primary components of the disorder can be identified 
and quantified, by matching the calculated and measured 
distributions of Bragg and continuous amplitudes in 
different regions of a diffraction pattern. This appears 
to lead to unique descriptions of disorder, although 
elucidation of finer details would require that the mole- 
cular transform, and therefore the molecular model, 
be specified rather accurately. Once the disorder in a 
specimen has been characterized, the potential exists for 
including its effects in structure determination, leading 
to a more accurate structure. 

The methods described here are semi-quantitative in 
the sense that, for the most part, the calculated and 
observed patterns were compared visually. The range of 
possible types and degrees of disorder that may occur 
in fibers is large and the semi-quantitative approach 
adopted here permits an initial survey of the disorder 
parameter space. The kinds of disorder and approximate 
values of disorder parameters inferred from such a 
survey give starting values that could be subjected 
to quantitative refinement. The approach we adopted 
for conducting this survey is based on matching the 
presence of key features on the diffraction patterns. The 
nature of these features varies with the type of disorder, 
and inspection of the overall distribution of Bragg and 
continuous intensity over the diffraction pattern should 
in many cases permit a large number of possible disorder 
models to be disqualified from consideration, leaving 
relatively few models to be considered in detail. Detailed 
analysis may then lead to a unique model of disorder. 
The issue of uniqueness has previously been discussed 
by us in detail (Stroud & Millane, 1985). In many cases, 
non-uniqueness in the description of disordered pack- 
ing may only be illusory, with the underlying disorder 
actually being the same and the different descriptions 
merely parameterizing this disorder in different ways. 
In the case of poly(dA), poly(dT), it appears that a 
unique description of the disorder can be derived but 
for poly(dA), poly(rU) the disorder is more pronounced, 
and there is some ambiguity at the level of detail of the 
analysis presented here. 

It is not possible to arrive at a single final packing 
model for the two molecules discussed here since the 
diffr cfion data are not sensitive to the average ori- 
entation of the molecules in the unit cell. This is a 
result of the particular combinations of molecular and 
lattice symmetry, not of disorder, and does not occur 
in general. Where it does occur, our analysis allows 
at least some aspects of the packing to be quantified. 
In many cases, molecular models may reveal steric 

interactions between adjacent molecules that limit the 
range of possible orientations in the unit cell. 

The fiber of poly(dA), poly(dT) is the more ordered 
of the two specimens examined here and the diffraction 
pattern is best explained by random screw disorder 
accompanied by small axial and lateral disorder. Pre- 
sumably, the looser lateral packing (relative to a fully 
polycrystaUine specimen) allows the molecules to adopt 
a variety of axial and rotational positions relative to their 
neighbors but the lateral packing is still tight enough that 
such distortions are constrained by the helical nature Of 
the molecule. 

The fiber of poly(dA), poly(rU) is more disordered 
and the diffraction pattern is better explained by rather 
larger lateral and axial disorder, together with significant 
rotations of the molecules. In this case, it seems rea- 
sonable that the larger degree of lateral disorder allows 
the molecules to move more independently of their 
neighbors so that they are not restricted to only screw 
rotations. 
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